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A theory is presented for a nonequilibrium phase transition in the two-dimensional Hubbard model coupled
to electrodes. Nonequilibrium magnetic and superconducting phase diagram is determined by the Keldysh
method, where the electron correlation is treated in the fluctuation exchange approximation. The nonequilib-
rium distribution function in the presence of electron correlation is evoked to capture a general feature in the
phase diagram.
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I. INTRODUCTION

While our understanding of the physics of electron corre-
lation has matured, there are still intriguing avenues that are
yet to be fully explored. One such avenue is strongly corre-
lated electron systems in nonequilibrium situations. While
there are a body of intense studies on nonequilibrium states
in strong ac fields such as strong light sources that can trig-
ger photoinduced insulator-to-metal transitions �see Ref. 1
and references therein�, or nonequilibrium states in strong dc
electric fields that can introduce pair creation of electron and
holes in dielectric breakdown,2,3 here we pursue yet another
situation, where nonequilibrium states are conceived for an
open, correlated electron system coupled to electrodes �Fig.
2�a� inset�. Two effects are expected to arise from the bias
voltage V across the electrodes. One is bicarrier doping, i.e.,
electrons and holes are simultaneously doped since two
Fermi energies exist due to the two electrodes. Naively one
might guess that this can make the system superconducting
�SC� with Cooper pairs formed by electrons or holes at half
filling but this has to be tested. There is in fact the second
effect, i.e., the electron-electron scattering in nonequilibrium
that makes the originally sharp Fermi surface to be smeared.
The smearing is expected to degrade magnetic orders,4 which
in our case implies that the smearing should act to reduce
antiferromagnetic �AF� order. The natural question then is:
will this also destroy the d-wave superconducting state?

Here we study this problem, which is motivated by two
recent experimental developments. One is the fabrication of
functional structures with oxides.5–7 In Refs. 5 and 6, prop-
erties such as superconducting transition in a clean electron
gas formed at an interface of two insulating oxides was stud-
ied while Ueno et al. have succeeded in controlling the su-
perconducting transition in an electrolyte-SrTiO3 system by
changing the applied voltage. Nonlinear transport properties
near the Mott transition at interfaces have also been theoreti-
cally studied in Refs. 8–10.

The second motivation comes from an experimental ob-
servation by Pothier et al.11 of a nonequilibrium electron
distribution—the double-step Fermi distribution—in a meso-
scopic copper wire attached to two electrodes. They showed
that the step in the Fermi distribution is rounded due to elec-
tron scattering. Such a smearing effect is expected to be even

stronger in correlated electron systems so that it is theoreti-
cally imperative to develop a method for dealing with the
nonequilibrium distribution of quasiparticles in a self-
consistent manner in order to examine the nature of nonequi-
librium phase transitions in correlated systems. Here we per-
form this by using the Keldysh method while the interaction
is treated within the fluctuation exchange approximation
�FLEX�.12,13 The superconductivity transition is studied with
the linearized Eliashberg equation.

We briefly comment on the past studies on superconduc-
tivity transition out of equilibrium. In a pioneering work by
Chang and Scalapino14 who have solved the electron-phonon
model self-consistently, it was pointed out that nonequilib-
rium conditions such as irradiation of light can cause the
quasiparticle distribution function to deform and, under cer-
tain conditions, can lead to higher Tc as observed in conven-
tional s-wave superconductors.15,16 In more recent attempts,
critical properties near an insulator-superconductor transition
were studied in Ref. 17 followed by several authors.18,19

Here we adopt the Hubbard model, a prototype in the
study of magnetism, superconductivity, and other phase tran-
sitions in correlated electron systems. In the two-dimensional
square lattice near half filling, the ground state is the Mott
insulator with an antiferromagnetic order.20 When chemically
doped with carriers �electrons or holes�, it is believed that
Cooper pairs are formed with d-wave symmetry and the sys-
tem becomes superconducting,12,21–23 as also discussed phe-
nomenologically in Refs. 24–26. So the question here is
what happens in nonequilibrium.

II. KELDYSH+FLEX METHOD

We consider a thin layer of strongly correlated material
described by the two-dimensional Hubbard model which is
coupled to electrodes. Here we have assumed for simplicity
the top and bottom electrodes �Fig. 2�a� inset�, since we want
to single out the effect of different chemical potentials be-
tween the two electrodes, while a lateral attachment of the
electrodes would cause a change in the spatial symmetry of
the phases. The total Hamiltonian is then given by

H = Hsys + Hsys-electrode + Helectrode, �1�

where
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Hsys = − t �
�i,j�,�

�ci�
† cj� + H.c.� + U�

i

ni↑ni↓ �2�

is the Hubbard Hamiltonian with the hopping integral t
�taken to be the unit of energy hereafter� and the repulsive
interaction U while

Hsys-electrode = �
i,�,k,�=1,2

�V�
kci�

† aik�� + H.c.� �3�

is the system-electrode coupling where we label the top �bot-
tom� electrodes with �=1�2�, and Helectrode the electrode
Hamiltonian. The electrode electrons �created by a†� are free
fermions having correlators �a�

†a��= f� with f� the Fermi dis-
tribution function with electrode-dependent chemical poten-
tial ��. The effect of the electrode can be taken into account
with the Schwinger-Dyson equation, where the self-energy,
��=�electrode

� +�int
� , consists of the contributions from the

electrodes and those from the interaction. Here �=r, a, �,
�, and K denote, respectively, the retarded, advanced, lesser,
greater, and Keldysh components �see, e.g., Refs. 27 and 28�.
The electrode self-energy becomes

�electrode
K = 2i �

�=1,2

	�

2
tanh


 − ��

2T
, �4�

�electrode
r = − i �

�=1,2

	�

2
, �5�

where 	� is the coupling strength between the system and the
electrodes,4,19 �� the respective chemical potential of the
electrodes, and the energy dependence in the density of states
is neglected. Here the temperature T of the two electrodes is
kept to be the same and we adopt 	�=0.001. We note that if
the coupling is too strong �	�� �0.1�, no ordering takes
place.

Nonequilbrium phase transitions can be studied by com-
bining the Keldysh formalism with the FLEX to examine
instabilities of the nonequilbrium normal state against mag-
netic and superconducting states. The self-energy arising
from the electron interaction is given, in nonequilbrium, by

�int
�,��p,
� = − i	 d
�

2�
	 dkPeff

�,��k,
��G�,��p − k,
 − 
�� ,

�6�

where p and k are momenta, 
 the frequency, and N the
number of k points considered. The retarded component of
the self-energy is determined from

Im �r =
1

2i
��� − ��� , �7�

where the real part is obtained via Kramers-Kronig’s rela-
tion. Such relations between the lesser, greater, and retarded
components exist for other quantities as well. The
fluctuation-mediated interaction, Peff

�,�, is given by

Peff
�,� = U2 Im
3

2
�s

�,� +
1

2
�c

�,� − �0
�,�� , �8�

where �s
���c

�� represent the spin �charge� susceptibilities,
whose retarded components are

�s
r = �0

r /�1 − U�0
r� , �9�

�c
r = �0

r /�1 + U�0
r� . �10�

Here �0 is the irreducible susceptibility,

�0
�,��q,
� = − i	 d
�

2�
	 dkG�,��k,
��G�,��k + q,
 + 
�� .

�11�

The lesser and greater components of spin and charge sus-
ceptibilities �s,c

� are determined by solving the Dyson equa-
tion. For �s, it is expressed by

�s
r = �s0

r + U�s0
r �s

r, �12�

�s
�,� = �s0

�,� + U�s0
�,��s

a + U�s0
r �s

�,�, �13�

obtained with aid of the Langreth rules and can be solved by

�s
r = �s0

r /�1 − U�s0
r � , �14�

�s
�,� =

�s0
�,�

�1 − U�s0
r ��1 − U�s0

a �
. �15�

Similar expressions exist for �c. Finally, Green’s function is
determined from the self-energy through the Schwinger-
Dyson equation,

�Gr,a�−1 = �G0
r,a�−1 − �r,a �16�

for the retarded and advanced components, and

G�,� = Gr��,�Ga �17�

for the Keldysh component29 with the bare Green’s function

G0
r,a = �
 − k � i��−1. �18�

The process is repeated until a self-consistent solution is ob-
tained. The nonequilibrium distribution function feff can be
extracted30 from the relation,

GK = �1 − 2feff��Gr − Ga� . �19�

We seek for a self-consistent solution of the above equations
with iteration until the self-energy converges. In the calcula-
tion we take a 64�64 grid for the square Brillouin zone
while an almost logarithmic mesh23,31 with 301 points for the

 axis is used. We shall see that the distribution function feff
deviates significantly from its noninteracting form �double-
step Fermi function�,

feff
0 = �	1fFD�
 − �1� + 	2fFD�
 − �2��/�	1 + 	2� �20�

�with fFD being the Fermi-Dirac distribution� as an effect of
the strong interaction.

The superconducting transition is studied in terms of the
linearized Eliashberg equation, here extended to nonequilib-
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rium. To this end, we iteratively �i=1,2 , . . .� obtain the
anomalous self-energy ��i

�� and anomalous Green’s function
�Fi

�� using ��, �s,c
� obtained in the previous step. With a

random initial guess for �1
r , Green’s function is determined

from the linearized Nambu-Gor’kov equation,

Fi
r =

�i
r

�
Z�2 − �k + X�2 , �21�


Z = 
 − ��r�
� − ��r�− 
���/2, �22�

X = ��r�
� + ��r�− 
���/2. �23�

Then the Keldysh component is calculated with the general-
ized distribution function,

Fi
K = �1 − 2feff��Fi

r − Fi
a� . �24�

We assume here that the distribution for the anomalous com-
ponent is the same as that for the normal component. Finally,
we plug this into the Eliashberg equation,

�i+1
�,��p,
� = − i	 d
�

2�
	 dkPsing

�,��k,
��Fi
�,��p − k,
 − 
�� ,

�25�

where the effective interaction in the spin-singlet channel is

Psing
�,� = U2 Im
3

2
�s

�,� −
1

2
�c

�,�� . �26�

The eigenvalue of the linearized Eliashberg equation is
obtained as �=limi→���i+1

r � / ��i
r�, where ��i

r�
= ��d
��dp�r�p ,
��2�1/2 is the norm. The superconducting
transition takes place when � exceeds unity.

Before moving on to the results, we comment on the ap-
plicability of the FLEX on the magnetic transition. In our
formalism, we have used the random-phase approximation
�RPA� expression for the susceptibility combined with the
FLEX following Ref. 12. In equilibrium, this approximation
gives a phase diagram for magnetic and superconducting
transitions where the superconducting phase cuts the AF
dome. The formalism has limitations in that �a� it cannot
describe the Mott physics or the pseudogap and �b� the mag-
netic transition is not recovered when one uses the FLEX
spin susceptibility instead of the RPA form �see Ref. 13�.
Thus the approach developed here should be considered to
be limited to the weak-coupling regime.

III. NONEQUILIBRIUM PHASE TRANSITION

We have applied the above formalism to obtain the non-
equilibrium phase diagram for the two-dimensional �square
lattice� Hubbard model attached to two electrodes by nu-
merically solving the equations self-consistently. In equilib-
rium the phase diagram within FLEX as obtained in Ref. 12
has an antiferromagnetic phase when the doping level �=1
−n is small, which is taken over by a d-wave superconduc-
tivity as � is increased. So the interest is how the nonequi-
librium situation modifies these. We first plot in Fig. 1�a� the

spin susceptibility Im �s�q ,
� for V=0.1 and a doping level
�=0.14. The result shows that the antiferromagnetic fluctua-
tion remains strong near half filling, for which we have four
incommensurate peaks around q= �� ,�� in k space, as in
equilibrium. The effect of increased bias is that the peak
height is reduced, and the peak position on energy axis shifts
upward as displayed in Fig. 1�c�, where Im �s

peak�q ,
� for
q= �� ,1.1�� is plotted. We notice that no features such as dip
or hump appear around 
�V. The dominant superconduct-
ing solution in Fig. 1�b� is again similar to the equilibrium
case, that is, the d-wave gap has the largest �d for the linear-
ized Eliashberg equation. However, the critical temperature
Tc at which �d reaches unity depends on V, as shown by the
temperature dependence of �d plotted in Fig. 1�d�. So the
bias V reduces Tc, until finally the superconducting state no
longer exists even at zero temperature when the bias be-
comes too strong. We define this as the critical bias Vc. For
the region of the band filling for which the antiferromagnetic
order dominates over the superconducting state, we can de-
fine the bias-dependent Néel temperature TN as the tempera-
ture at which the spin susceptibility diverges.32 The spin sus-
ceptibility is reduced as the bias in increased, until the
antiferromagnetic order vanishes even at zero temperature
beyond the “critical Néel bias” VN. The doping dependence
of the Néel bias and the critical temperatures for a fixed bias
is shown in Fig. 2�a�. We can see that, while the AF phase is
relatively persistent, the SC region rapidly shrinks with the
bias V and disappears at V�0.1.
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FIG. 1. �Color online� �a� Spin susceptibility Im �s�q ,
� and �b�
superconducting gap function Re ��k ,
=0� are color coded versus
momentum for a bias V=0.1 above the critical value, with the dop-
ing level �=0.14, U=4.5, and �=−0.35. Dashed lines in �b� repre-
sent the nodes. �c� The peak value Im �s

peak�q ,
� versus 
 for V
=0.1–0.2 from top to bottom for q= �� ,1.1��. T=0.002 for �a�–�c�.
�d� The temperature dependence of the Eliashberg eigenvalue �d for
the d-wave pairing for V=0.0–0.1 from top to bottom.
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The phase diagram at zero temperature is plotted on the
�V ,�� plane in Fig. 2�b�. The Néel bias, peaked at the un-
doped point with VN�0.36, decreases with the doping, and
the AF phase is replaced with the SC phase around ��0.1
with a maximum critical bias for SC Vc�0.1. As we further
increase the doping, the SC phase finally disappears. Figure
2�c� schematically summarizes the phase transitions in the
�T ,V ,�� space.

IV. NONEQUILIBRIUM DISTRIBUTION FUNCTION

As was experimentally found in a tunneling measurement
in a mesoscopic wire of copper by Pothier et al.,11 the non-
equilibrium electron distribution becomes smeared from the
simple, double-step Fermi distribution feff

0 due to electron
scattering. In correlated materials with a strong electron-
electron interaction, we expect a greater smearing effect to
take place. Indeed, as we shall reveal below, the key feature
to understand the nonequilibrium phase diagram for the open
Hubbard model may be captured by the way in which the
nonequilibrium distribution function is rounded by the inter-
action effect.

Figure 3�a� plots the effective distribution feff defined in
Eq. �19� obtained self-consistently for two values of the bias
V. The temperature in the electrodes, hence in feff

0 , is set to
zero. If we compare the result with the corresponding non-
interacting distribution function feff

0 �Eq. �20�� �dashed lines�,
feff is seen to significantly deviate from feff

0 . More impor-
tantly, we find here that the effective temperature approxima-
tion breaks down, that is, we cannot fit feff to feff

0 with the
temperature as a fitting parameter. Instead, the best fit to the
data is given by

feff
fit = � 1 − �e�
+V/2�/�, 
 � − V/2

− �1 − 2��
/V + 1/2, − V/2 � 
 � V/2
�e−�
−V/2�/�, V/2 � 
 ,

� �27�

where � and � are the fitting parameters. The parameter �
having the dimension of energy represents the extent to
which the distribution is smeared from the double-step func-
tion. We have found in Fig. 3�b� that the fitting function Eq.
�27� is adequate in the present open Hubbard model in that
all the data for various values of the parameters
�V ,	 ,U ,� , . . .� are reproduced within the numerical errors. If
we specifically plot the bias dependence of the smearing pa-
rameter in Fig. 3�c�, we can see that they fall upon an uni-
versal curve. When V is small, one can approximate this with
a linear relation,

� � V . �28�

The proportionality constant depends on the interaction
strength U and the coupling 	 to the electrodes but not on the
filling � as seen from the figure. The constant is reduced
when the coupling to the electrode becomes stronger.

From the viewpoint of the smeared distribution, we can
conceive the bias-driven phase transitions in the following
way. We have seen in Fig. 2�b� that the AF �SC� orders die
out at V�0.4 �V�0.1�, respectively. In terms of Eq. �28�,
these values correspond to the smearing parameters �
�0.1���0.02�. We can then note that these values are simi-
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FIG. 2. �Color online� �a� The phase diagrams for various values
of the bias voltage V with AF and SC phases with U / t=4.5. Origins
of the three panels are shifted for clarity, and shadings representing
different phases are only a guide to the eye. Inset: schematic sample
�shaded� configuration with two electrodes. �b� The zero-
temperature phase diagram on the �V ,�� plane. �c� Schematic phase
diagram in the �T ,V ,�� space.
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lar to the highest Néel �critical� temperatures in the zero-bias
phase diagram �Fig. 2�a�, upper panel�. Thus, the transition
takes place when the smearing parameter � attains a value
�depth of each phase in the phase diagram in Fig. 2�c� as
translated to �� that is similar to the transition temperature
�height in the same phase diagram�. AF spin fluctuations are
suppressed in finite bias voltages in this manner, which is
similar to what happens in itinerant electron magnets.4

V. DISCUSSION

We have obtained a nonequilibrium phase diagram for the
two-dimensional Hubbard model, and pointed out the possi-
bility of controlling the phases in strongly correlated hetero-
structures �i.e., electrode-system-electrode� by external bias.
Both of AF and SC regions shrink with the bias V, which we
attribute to the smearing of the nonequilibrium distribution
function. While the smearing can be reduced if we make the
system more strongly coupled to the electrodes �in, e.g., a

thinner sample�, this will lead to the destruction of orders
because a larger coupling 	 to electrodes will make the spin
fluctuations weaker. Thus we conclude the smearing of the
distribution function is an important property characterizing
correlated electron systems out of equilibrium, and an ex-
perimental verification of this should be interesting. We have
to make a caution that FLEX employed here has limitations
in that it ignores the vertex correction, and cannot address,
due to its weak-coupling nature, the behavior close to the
Mott insulator point, as mentioned. Effects of electrodes �on,
e.g., the pairing symmetry� when they are attached laterally
are also intriguing. A more ambitious future problem is a
possibility of bicarrier induced superconductivity in nonequi-
librium, for which the present formalism may serve as a
starting point.
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